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Abstract—Network measurements often require the coordi-
nated use of multiple tools on distributed vantage points. Without
any form of supporting command and control system, the
management and execution of a systematic measurement study is
a tedious mission. In this paper we present MINER which seeks
to simplify this task. MINER is a programmable measurement
infrastructure that integrates existing measurement tools and
provides its users higher-level services on top of them. It enables
users to define measurement activities, schedule executions and
retrieve their results. The services are accessible via a tool-
agnostic and unified programming interface with which mea-
surement applications can be developed. We discuss MINER’s
requirements and design considerations and present a modular
implementation that can be flexibly extended through plugins.
Finally, we report on usage scenarios and directions for future
work.

I. INTRODUCTION

It is no doubt indispensable to perform monitoring and
measurement activities in computer networks. To this end, the
community of researchers and network operators has produced
a considerable amount of measurement instruments, often
called tools. Examples of such tools are ping, traceroute, tcp-
dump etc. In an attempt to create a taxonomy for measurement
and analysis tools, project MOME reports [1] on more than
350 tools.

When a researcher is faced with the task of performing
network measurements, she/he typically needs to employ mul-
tiple such tools to produce the required metrics. Many types
of measurement require that these tools are executed in a co-
ordinated fashion on various vantage points distributed in the
network under study [2]. When multiple measurement runs,
possibly with varying configurations, are conducted to realize
a systematic study, the “manual” execution soon becomes a
tedious task. The user has to handle the large diversity related
to the configuration of tools and their results. In some way it
must be ensured that all tools are available at the measurement
points, that they initialize correctly, and that errors arising
during the execution are handled gracefully. Without any form
of a supporting command and control system the user needs
to carry out many (error prone) execution steps and with each
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new measurement most of this work has to be repeated. This
approach clearly fails to scale well.

To simplify the task, and for other reasons, several endeav-
ours have been undertaken [3]–[8] to develop what is often
called a measurement infrastructure. The common ground
among them is that they provide (usually on top of existing
tools) measurement facilities on distributed vantage points.

In this paper we present the Measurement Infrastructure for
Network Research (MINER). The main objective of MINER1

is to support users in the task of carrying out systematic
measurement studies. MINER can easily integrate existing (or
new) measurement tools and provides higher-level services on
top of them via a programming interface. In a way similar to
how simulation scenarios are executed on a simulation plat-
form, measurement scenarios are run by MINER. A scenario
can employ an arbitrary number of tools in parallel. A tool
is not restricted to just active or passive measurements but it
could e.g. be used to configure a testbed component as needed
for the particular scenario.

The rest of the paper is structured as follows: in section II
we discuss related work and identify how MINER differs from
these approaches. In section III we detail the requirements that
have been the starting point for our work, design decisions
are described in section IV, and implementation aspects are
outlined in section V. Sample applications of the framework
are described in section VI. Finally, we outline the benefits
of using MINER in section VII and conclude the paper with
directions for future work in section VIII.

II. RELATED WORK

A number of distributed network measurement infrastruc-
tures have been developed. They were built with varying
objectives and expose very diverse characteristics, e.g. in terms
of large-scale applicability, security, flexibility in supporting
different types of measurements, applicability to deployments
with multiple administrative authorities, reuse of existing tools,
programmability, and extensibility.

Several projects have successfully built such infrastructures
and collected large amounts of data. ETOMIC [9] enables

1http://miner.salzburgresearch.at



synchronized active measurements at a high temporal reso-
lution. At the infrastructure level, ETOMIC doesn’t provide
a user programming interface and is not easily extensible to
new types of measurements. The DIMES project [10] created
a truly large-scale system with a tight focus on traceroute
and ping measurements. Skitter [11] also builds upon a large
community and has a similar limited scope of measurement
types. Its successor archipelago (ark) [12], [13] is desgined as
a fully extensible active measurement infrastructure.

Other approaches - most notably NIMI [7], [14], Script-
route [6], DipZoom [15] and perfSONAR [3] - head for a
generic measurement infrastructure that can be extended and
customized to the needs of a specific problem domain.

NIMI is designed for large-scale deployments in multiple
administrative domains. Security is addressed with various
mechanisms, among them restricting access to authenticated
users and encrypting communication messages. Tools are
integrated via wrapper scripts that conform to a uniform API,
an approach that has been equally chosen for MINER.

Scriptroute takes a completely different approach to achieve
goals that are similar to NIMI. The infrastructure is truly pub-
lic without requiring user accounts. To enable this, a great deal
of attention is paid to security issues. The basic approach is to
execute measurements in a sandbox environment that imposes
very tight limits on resource consumption. Unlike NIMI or
MINER, existing measurement tools cannot be wrapped and
plugged into vantage points; instead, they have to be (re-
)implemented in a scripting language and by using the APIs
provided by the sandbox.

DipZoom [15] seeks to establish a large availability of mea-
surement points by resting upon a peer-to-peer model where
each measurement client must also serve as a measurement
point. DipZoom is built upon a matchmaking service that
allows clients to locate measurement points providing the
required facilities. According to [15], DipZoom ships with a
very limited number of tools, however work is in progress
on an extensibility mechanism that allows for new tools to
be plugged in. The rate-limits imposed by the execution envi-
ronment restrict the spectrum of tools that can be integrated.
MINER shares the feature of a programmable platform with
DipZoom.

The perfSONAR infrastructure [3], [16] is concerned
with the monitoring of multi-domain infrastructures. It is
primarily made for network operation centers (NOC) and
performance enhancement and response teams (PERT). To
them it provides means to observe, analyze and debug perfor-
mance aspects of end-to-end connections traversing multiple
domains. Among other networks, perfSONAR is currently
employed in GEANT2 and Internet2 where many instances
of measurement points are continuously producing data on
fundamental network metrics (e.g. one-way delay, one-way
loss, traceroute, interface utilization, TCP throughput). If a
user requests data that is currently not available, a correspond-
ing monitoring/measurement activity is triggered. The perf-
SONAR approch is based on the service oriented architecture
(SOA) paradigm. All components are designed as web services

and the system can be easily extended by adding new services.
In terms of architecture, MINER also relies on a SOA design.
However, these services are almost exclusively infrastructure
internal and not exposed to the user. The selection and config-
uration of internal services is done implicitly in a declarative
way through the scenario specification.

All infrastructures described above have some features in
common with MINER: they all provide monitoring and mea-
surement services in TCP/IP networks on the basis of existing
algorithms and/or tools. The primary motivation for using one
of the infrastructures is to analyze the behavior of the network
under study. To achieve this a number of measurement points is
operated to continuously monitor / measure key performance
metrics. The results are maintained in (large) data archives.
The services to collect, store and analyze the data are of great
utility to get an insight into the dynamics of the network, to
study performance issues, to analyze network anomalies and
conduct various other studies. Although nothing prevents a
user from making similar types of measurements with MINER,
the above described infrastructures are much more suitable for
such studies.

MINER is really designed for a different purpose. The
main goal is to support users in evaluating some entity by
making systematic measurement studies. A study is charac-
terized by the need to perform multiple measurement runs
with various configurations. Each measurement run requires
the coordinated use of multiple tools in distributed locations.
Naturally, it must be possible to make use of existing tools.
The entity under study could e.g. be an end-user application,
a network protocol, a QoS mechanism or some networking
device. An example application of the infrastructure is shown
in section VI.

III. REQUIREMENTS

A major objective in the development of MINER is to
establish a programmable measurement infrastructure that
enables the combined usage of arbitrary measurement tools
via a unified application programming interface (user API).
The primary services offered by the infrastructure enable a
user to:

• specify measurement scenarios;
• schedule the execution of scenarios;
• retrieve results and associated logs of executions.
It is required that the user API is tool-agnostic such that

the interface to configure a tool and retrieve its results is
unified among all MINER tools. This frees the user from
having to know the native configuration/result format of a tool.
It must be possible to provide user API implementations in
various programming languages so that users can rely on their
language of choice.

Another high-level requirement is the clear division between
the infrastructure itself and the tools that it integrates. The
motivation behind is that the integration of a tool must
never require any modification at the infrastructure level. The
process of tool integration must be made as simple as possible.
In principal, there must not be any restrictions as to what a tool



can do: active measurements, passive monitoring, or “just” the
configuration of a testbed component. A measurement activity
is specified in a so called MINER scenario, in short scenario.
The scenario, its executions, and their results must be stored
persistently to provide for traceability in the measurement
workflow.

It is a major requirement that the infrastructure is con-
structed as a modular software system where the implementa-
tion of a functional component can be extended or completely
replaced with a different implementation, respectively. This
feature shall enable project specific customizations that do not
require any modifications to the core infrastructure.

Measurement specification

A scenario must allow for the combined usage of multiple
tools. The activity period of a tool within a measurement
can be defined separately for each tool so that one tool
can e.g. start later and finish earlier than another tool of
the same scenario. The scenario specification must provide
facilities to group multiple tools into a single logical unit
(e.g. background load) that can be reused by reference in
another scenario. Thus, if the user makes a modification in this
unit (e.g. to fix a configuration error), all dependent scenarios
are automatically up-to-date. A user must explicitly define
which results a tool has to produce. It must be possible to
define conditions on those results (e.g. delay < 200ms). In
this case the infrastructure must monitor the delay values in a
timely manner and generate an alarm as soon as a condition
is violated.

Infrastructure core

A scenario has to be submitted to the infrastructure core
where it is verified and – if successful – stored persistently.
The verification process should be strict and try to detect
as many errors as possible. In particular, we require that
the verification of the tool configurations is done already at
scenario submission time. This is especially important as the
execution of a scenario can be scheduled for a later time.
In general, a scenario can be scheduled for execution an
unrestricted number of times.

The success of a schedule request is subject to the conflict
detection algorithms implemented in a scheduler component.
This scheduler must allow for extensibility so that different
algorithms can be adopted.

When a scheduled execution is due, the infrastructure core
must initiate and coordinate the execution process. First, the
execution request (containing the scenario) is distributed to
all measurement points where the tools have to be initialized.
If one of the tools fails to initialize correctly, the execution
process has to be terminated gracefully. When all tools are
ready they must be run according to the activity periods
defined in the scenario. If errors occur during this active
period, they must again be handled gracefully. If no errors
occur, a tool typically generates results which are sent to the
specified result store. Depending on the configuration this may
happen during or after the activity period, respectively. At least
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Fig. 1. MINER system overview showing the main subsystems

the core must implement a result store, however, additional
distributed result stores (e.g. close to the data source) should
be supported. Users can access the result data through the user
API without having to know where the data is actually stored.

Measurement point

A measurement point is a device on which a tool is
executed. A tool can be used multiple times within the same
scenario and it may be acceptable to execute multiple scenarios
on a device at the same time. We require that tool instances
are dynamically created by the infrastructure upon request and
removed afterwards. Otherwise a measurement point would
be unnecessarily overloaded with tool instances just to be
prepared for the maximum usage case.

We require a mechanism that allows for automated deploy-
ment of a tool to a remote measurement point. Additionally,
hot installation of a tool into a running measurement point is
required. Multiple versions of the same tool can be active at the
same time. In general, tools must run as isolated components
within a measurement point in the sense that there must not
be any namespace of library conflicts. As an example, it must
be valid to execute two tools at the same time although they
both rely on the same library in different versions. It must
be possible to package system libraries (shared object files or
DLLs) with a tool and have them activated at runtime.

Finally we require that mobile devices (programmable cell
phones, PDAs, etc.) can be used as measurement points.

IV. DESIGN

Four subsystems have been identified in the design of
MINER: the ClientLibrary, the Core, the ToolProxy and the
MINER Tool. These subsystems are shown in figure 1.

The ClientLibrary is a software library that enables a user
to utilize the services provided by the infrastructure. With
this user API implementation a programmer can conveniently
define scenarios, schedule executions, and retrieve their results.
ClientLibrary implementations can be provided for various
programming languages.

The Core is the server component of the infrastructure. It
handles scenario submissions and execution schedule requests.
It triggers the timely execution and handles all communi-
cation with the ToolProxies to which the execution request



is deployed. It implements the appropriate error handling
procedures in accordance with the execution model such
that any failures are handled gracefully. It accepts result
data coming from the ToolProxies during and/or after the
execution and stores that data persistently along with the
scenario specification and execution schedule. If a ToolProxy
signals the violation of a user defined condition, notification
mechanisms are triggered by the Core. Moreover, the Core
maintains a continuously updated registry of all ToolProxies
and their MINER Tools.

The ToolProxy acts as a mediator between the Core and the
MINER Tools. When a ToolProxy is started, it registers itself
at the associated Core and informs it about its measurement
interfaces and available MINER Tools. The ToolProxy handles
all communication with the Core on behalf of the MINER
Tools. When the ToolProxy receives a scenario execution
request it dynamically instantiates the required MINER Tools
and follows the execution plan by invoking each MINER
Tool’s methods at the right time (according to the activity
period). The ToolProxy provides the execution environment
to the MINER Tools.

A MINER Tool is a component that implements a desig-
nated tool interface. There is exactly one such interface that
is used for the implementation of any type of tool. In many
cases, a MINER Tool is a wrapper to an existing tool but this
is not required. There are no restrictions as to what a MINER
Tool can do as long as it doesn’t need more resources than
provided by the ToolProxy’s execution context (which doesn’t
impose any constraints in the default setup). A MINER Tool
is plugged into the ToolProxy.

Modularity

In order to enable the required modularity, we tried to
identify the main components that shall be extensible. In the
Core, this applies at least to the functional units described in
the following.

Service access The mechanism by which the Core provides
access to its services shall not be hard-coded, instead it must be
possible to provide multiple implementations as Core plugins.

Execution scheduling A schedule manager is invoked
when the Core receives a request to schedule a scenario for
execution. The request has to be rejected if it would lead
to a schedule conflict. We can envision various types of
schedule policies like e.g. (i) don’t allow more than 1 active
execution per infrastructure / per ToolProxy / per measurement
interface (ii) don’t allow the parallel activity of the tools
X and Y (iii) don’t allow more than 1 active instance of
tool X per ToolProxy. We design a schedule manager that
accommodates an arbitrary number of schedulers which are
provided as plugins. The manager accepts a request if none of
the registered schedulers rejects it.

Execution model It can be useful to have different ex-
ecution models depending on the measurement scenario. In
one case, it may be required that an execution is canceled if
any of the MINER Tools fails during initialization or runtime.
In another case the scenario shall be executed if “enough”

MINER Tools don’t fail (and of course assuming that the
execution log contains all relevant error details).

Result processor When result data arrive at the Core they
are passed to a result processor. Before storing the data
persistently such a processor can perform various actions on
the data, e.g. anonymize or compress it. Alternatively, there
may be situations where a MINER Tool consists of a sender
and a receiver part, both parts send information to the Core,
and the result of interest can only be computed by the result
processor from these two data sources.

Storage The result storage shall be extensible to new types
of data and it shall not depend on any specific technology. The
storage component is an abstraction to the physical data store.
It can e.g. be implemented via the file system or some form
of database system (SQL, RRD, pure XML). Furthermore the
result storage should support distributed locations to store large
data sets close to the source (e.g. full packet traces).

Result query An extensible result query component can
be utilized to implement server side result processing, e.g. to
compute statistics from a large volume of stored result data.

Notification When a condition is violated the notification
module is invoked. Different forms of notification (log entry,
callback to the ClientLibrary, email, command execution etc.)
can be useful.

At the ToolProxy we design the following components:
MINER Tools Each MINER Tool is a separate component

that is plugged into the ToolProxy.
Execution context Each MINER Tool runs in a well-

defined execution context within the ToolProxy. This con-
text shall be customizable by additional components, e.g. to
implement a sandbox. The context can be further adapted
by providing APIs to components like a packet capture and
injection daemon [17] or a MAPI [18] interface.

Scenario specification

The scenario is the entity that fully specifies the required
measurement activity, i.e. where to measure, what MINER
Tools to use, how to configure them, what results to produce,
etc. We design the scenario as a hierarchical composition: a
scenario consists of at least one task, and each task consists
of at least one action. A MINER Tool is selected within the
action part. To enable the usage of multiple MINER Tools in
one scenario, a two-level hierarchy scenario – action would
be sufficient. The additional level in the form of a task is
introduced to enable logical grouping of actions. Subsequently,
a task can be reused in other scenarios by reference, i.e.
without having to copy it. In the same way, an existing action
can be referenced by several tasks. All units can be annotated
with a description and keywords / tags.

Figure 2 shows a graphical representation of a sample
scenario which is used in section VI below.

To enable multiple executions of a scenario, the scenario
does not hold any execution specific data such as the start
time and the duration of the execution. These parameters are
specified with the schedule request.
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Fig. 2. A sample scenario specification

Scenario verification

To enable the strict and early verification of scenarios
at submission time we choose the approach that a MINER
Tool must provide two descriptions of itself. The first one
is a W3C Schema2 file that defines a template for a valid
configuration. The second one is an XML file that defines
all results that the MINER Tool can possibly produce. This
file must validate against an XML schema provided to tool
implementor. The procedure of MINER tool implementation
is outlined in section V-A below.

In the process of the scenario verification we partially rely
on XML technology. The Core receives the scenario as an
XML document (which is usually created by the ClientLi-
brary). This document is validated against its XML schema
leaving out the tool configurations in the first step. Then, each
tool configuration (an XML fragment) is validated against its
corresponding schema.

By relying on these well-established XML technologies we
can make use of the whole toolchain that is available today.
A schema allows for a precise definition of constraints: if
e.g. a MINER Tool requires an IP address parameter, the
tool developer can use a regular expression that matches only
valid IP addresses. This in turn provides great utility to the
person writing the MINER Tool configurations as a schema-
supporting XML editor will immediately show an error if
invalid data is entered.

Besides the XML based validation, the Core makes addi-
tional checks like: Do the referenced ToolProxies exist? Do
the MINER Tools exist on these ToolProxies? Can the MINER
Tools produce the requested results? Are the conditions im-
posed on results that accept conditions? If these and additional
tests pass, the scenario is accepted and saved to the database.

V. IMPLEMENTATION

One key guideline in the implementation is to build upon
existing functionality in the form of mature software compo-
nents and libraries.

MINER is implemented in Java as it offers the power
and flexibility of a general purpose programming language,
it supports modern software engineering approaches, it is

2http://www.w3.org/XML/Schema

platform independent, powerful IDEs are freely available and
a large number of mature libraries exists. Java is considered a
“safe” language and has built-in mechanisms for fine-grained
access control to system and network resources. A powerful
dynamic module system for Java has been specified [19] by
the OSGi alliance.

The OSGi approach is a perfect match for satisfying all the
modularity and extensibility needs of MINER. It enables the
implementation of the components described in section IV as
separate modules (bundles in OSGi terminology). Addition-
ally, OSGi comes with full support for installation of bundles
from remote locations. Also, bundles can be added, updated,
and removed without having to restart the application. OSGi
does not constrain usage on (possibly resource limited) mobile
devices as it is a lightweight technology that was primarily
developed for application in embedded systems.

Our current MINER implementation is based on the fol-
lowing solutions: an OSGi implementation (Eclipse Equinox);
a relational database (MySQL) for all persistency needs; an
object-relational mapper (Hibernate) that abstracts the concrete
database product, manages a connection pool, and provides
caching to increase performance; default Java tools to parse,
validate, transform, and map (JAX-B) XML documents; soft-
ware agent technology (JADE) to realize the ToolProxies; Web
services (SOAP over HTTP) for communication between the
ClientLibrary and the Core. Details of the implementation can
be found in project report [20].

A. MINER Tool implementation

To make the infrastructure usable for network measure-
ments, MINER Tools need to be made available. Typically
a MINER Tool relies on the functionality of an existing tool
but this doesn’t necessarily have to be the case. The process
of implementing a MINER Tool is outlined in the following.
Basically, a MINER tool developer must provide for:

• an implementation providing the required measurement
(or other) functionality;

• a configuration schema;
• a specification of available results;
• tool packaging.
1) Functionality: A MINER Tool is realized as a subclass

of the abstract Java class MinerTool. This class contains an
instance of an IToolContext interface which is the single
means through which the MINER Tool can interact with the
ToolProxy, e.g. to send results or to create execution log
messages.

With the help of this IToolContext a concrete MINER Tool
must implement the following 3 methods:

• boolean init(toolConfig, results)
• void run()
• void finish()
The init() method is called immediately after the MINER

Tool is instantiated. It is used for initialization work and has
to make sure that all required resources are available. The
method is passed the configuration for the MINER Tool (as



an XML document) and a list of the results that are requested.
An initialization failure must be signaled by returning false.
This information is then spread to all the ToolProxies involved
in the scenario and the execution is canceled (unless an
alternative execution model is employed).

The run() method is called by the ToolProxy when the
activity period of the action starts. Inside this method, the
“real” work is normally done. If the MINER Tool wraps
an existing measurement tool, then this tool executable is
typically called now. When results become available, the
MINER Tool passes them to its ToolProxy.

The finish() method is called after the activity period of the
action has ended. It is used to release resources and perform
cleanup work.

2) Configuration schema: The developer must provide a
W3C XML Schema that defines a template for a valid con-
figuration of this MINER Tool. It is up to the developer in
what detail the schema is elaborated. The configuration can be
accepted as a simple unspecified String (like a command line).
Alternatively, the schema can define (a hierarchy of) elements
for each configuration item and specify constraints (e.g. via
allowed ranges or regular expressions). With an increasing
detail in the schema the scenario verification performed by
the Core becomes more powerful.

3) Available results: The developer must provide an XML
file that describes all results that this MINER Tool can possible
produce. This file must validate against the corresponding
schema that is provided to the developer. A result is described
by its name and a data type; optionally a specific result
processor, unit, description, and configuration parameters can
be defined. An example of a configurable result is a throughput
that requires an averaging interval. Finally, a result can be
marked such that it must not be used in a condition.

4) Packaging: The developer must finally package the
compiled Java classes and the 2 XML files into an OSGi
bundle which is a normal Java archive (.jar file) enriched
with additional meta information. Tool support is available
for creating the archive.

B. Implementation status

In middle of 2008 the implementation reached a stable
state which we considered as version 1. Most features are
implemented as described above. The main deviation is that
the Core, while clearly having a modular design, is not yet
built on OSGi technology. Therefore, the provisioning of Core
modules is not optimal, yet. On the ToolProxy level, more
work should be spent on optimizing the run-time behavior with
respect to performance and robustness in adverse conditions.
As an example, the user may specify that results have to be
sent back to the Core only after the execution has finished.
Until then, results are buffered at the ToolProxy. There is
currently no mechanism to swap out results to a disk if the
ToolProxy is running out of heap space.

A lot of effort was put into developing more than 300 unit
tests that are executed regularly. We currently have a Java

implementation of the ClientLibrary. Although programmabil-
ity is one of the key features, there are situations where it
would be handy to have a graphical user interface (GUI) to
the infrastructure. As an example, this applies to browsing
executions, their logs and results. To this end we have created
a modern web-based proof-of-concept prototype which works
well but is in a very early stage. Most of the implementation
worked was focused on the infrastructure level. Therefore,
only few MINER Tools have been implemented so far:

• SNMPTool to gather information from distributed hosts
via SNMP.

• IPPMTool to actively measure one-way delay, packet loss
and jitter according to the IPPM specifications[21]–[23].

• SnifferTool to capture network traffic with libpcap.
• NTPTool to monitor the state of time synchronization of

a host via NTP.
• ITGTool for active traffic generation with the flexible D-

ITG generator from the University of Naples [24].
• BARTTool to measure the available bandwidth with the

BART tool [25].
• NETEMTool to configure the linux kernel-level network

emulator netem [26].
• ETPTool to query performance statistics from the En-

hanced Transport Protocol (ETP) [27].

VI. APPLICATION

To practically illustrate how MINER can be applied we first
show a sample use case and subsequently list how MINER has
already been employed in some other real-world cases.

A. Sample scenario

In this section we discuss an exemplary application of the
framework in an imaginary use case. In this discussion we dis-
regard whether the setup in terms of trial topology, number of
traffic generators, tool implementation etc. is reasonable. The
goal is merely to illustrate how MINER can be conceptually
applied to approach a given problem.

Let’s assume that we need to evaluate several aspects of
a networking device. A number of different device configu-
rations shall be tested under various load levels and traffic
patterns. Results of interest could be the packet forwarding
performance, the correctness of packet filters, the accuracy
of the traffic shaping implementation, the response time for
SNMP queries, etc.

As a first step, the appropriate MINER Tools have to
be provided. Several tools may already be available, like
the ITGTool, SnifferTool, and SNMPTool described above.
Missing MINER tools have to be implemented. In the given
case we create a tool MyConfigTool which configures the
device under test.

The configuration schema of MyConfigTool contains the
following elements:

• the IP address of the device
• the port number of the configuration service
• a public key used for authentication
• the device configuration
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The only result that MyConfigTool can possibly produce is
called activeConfig and is of type String. It reports the running
configuration of the device after it has been configured.

The implementation of MyConfigTool is straight forward.
For this tool it is useful to implement the functionality in
the init() method. If the device configuration fails, init() re-
turns false and the whole execution is canceled. Alternatively,
the device configuration could be implemented in the run()
method. In that case the user would have to be aware that
the action containing this tool must be scheduled for earlier
execution than the other actions so that the device is configured
as expected before the other MINER Tools become active. The
first variant is clearly preferable in this case.

In the init() method a connection to the device is estab-
lished, the device configuration is reset and the new configu-
ration is applied. If any errors occur, the error messages are
logged and init() returns false. The log messages are saved to
the execution log which can be retrieved by the user. If the
user requested the result activeConfig, then the configuration
is queried from the device and sent back as a result (via the
addResult() method provided by the IToolContext, see sec-
tion V-A1). The run() and finish() methods of MyConfigTool
can be empty.

A minimalistic testbed is shown in figure 3. Each node is
connected to a second network shown as dotted lines. It is
used for signalling traffic. The MINER Core is located on
host PC3, ToolProxies are running on hosts PC1, PC2, and
PC3. Figure 2 shows an example of a generic scenario tree.
The grouping of actions into tasks is an arbitrary choice. Some
results of interest are delivered directly by the MINER Tools
(e.g. statistics of SNMP query time, packet throughput) while
others are computed offline on the basis of the raw capture
files (e.g. accuracy of shaping).

It is assumed that all combinations of traffic loads
(low/medium/high), traffic patterns (small/medium/large pack-
ets), two different sets of SNMP queries (Q1/Q2) and four
different device configurations (A/B/C/D) shall be tested. This
makes up for 72 different scenarios. Note that for any scenario,
several actions can be reused by reference. For example, the
action containing MyConfigTool with device configuration A
is used in 18 scenarios.

For the given study it may be useful to create an application
that enables a user to define the whole set of test cases via a
single configuration file. From this file all MINER scenarios
are created, submitted, and scheduled for successive execution.

When the whole study has to be repeated at a later time

(e.g. to analyse a new firmware release), the set of scenarios
is simply rescheduled for another execution.

Figure 4 shows a code excerpt of an application that is
built on top of the Java ClientLibrary. The application defines
a MINER scenario, submits it to the Core and schedules it
for immediate execution. Only the definition of the action
containing MyConfigTool is shown in the code, the definition
of the other tasks and actions is left out as indicated in line
18. The classes Scenario, Task, Action, and ResultRequest are
provided by the ClientLibrary. By using them the programmer
can easily create the scenario as depicted in figure 2. The tool
configuration mytool.xml is shown in the lower part of the
figure. It is defined in an external file by using a W3C Schema
aware editor instead of using an error prone inline approach.
It is obvious how different scenarios can be easily created
by loading different configuration files. Once the scenario
specification is complete, it is submitted to the Core (line 21).
If the submission succeeds, the scenario can be scheduled for
execution. The call in line 23 triggers the immediate execution.

B. Current MINER usage

So far, MINER has been primarily used in the European ICT
project NETQOS [28] which is concerned with autonomous
policy-based networking. There, an application written on top
of the ClientLibrary automatically maps operational policies
which are related to measurable metrics into MINER scenar-
ios. Performance criteria, if expressed in the conditions parts of
the policy, are mapped into conditions of the MINER scenario.
A scenario is submitted to the Core and executed immediately.
If a condition is violated then an alarm is emitted by the Core
(using a project specific notification plugin) and the policy
adaptation module takes care of this situation. Typically, an
adaptation module queries the Core for detailed results (e.g.
the history of delay values over some time interval) and uses
this data as input to its adaptation model.

A German research project uses MINER since summer 2008
to measure the network performance under novel cooperative
algorithms in next generation cellular networks [29].

Researchers from LAAS/CNRS have used MINER to setup
an infrastructure that performs automated regression tests of
the Enhanced Transport Protocol (ETP) [27].

In an industrial use case, MINER is employed at a local
Austrian ISP to continuously measure the perceptual VoIP
quality. If measurements indicate problems in (some part of)
the network, detailed monitoring activities and measurements
are triggered in order to provide the data necessary for
analyzing the problem.

VII. BENEFITS GAINED FROM MINER USAGE

MINER is very well usable for cooperative research projects
where a group of researchers needs to carry out systematic
measurement studies in a project testbed. From our own
experience and the feedback of early users we feel that MINER
provides a solid set of features that – in its combined form
– is not readily available elsewhere. The infrastructure is
fully programmable by utilizing a single API which can be



    MyApp.java 
    1 Scenario s = new Scenario("Tridentcom"); 
    2 Task t = s.addTask(new Task("Control")); 
    3  
    4 Action a = t.addAction(new Action("config")); 
    5 a.addProxy("PC3"); 
    6 a.setTool("com.example.MyConfigTool"); 
    7 a.setToolconfig(loadDoc("myconfig.xml"); 
    8 a.addResultRequest( 
    9     new ResultRequest<String>("activeConfig")); 
   10  
   11 // create other tasks and actions 
   12 ... 
   13  
   14 // submit the scenario to the Core 
   15 s.submit(); 
   16 // schedule the scenario for immediate execution 
   17 s.run(); 
 
    myconfig.xml 
    1 <?xml version="1.0" encoding="UTF-8"?> 
    2 <MyConfigTool> 
    3     <IP>10.0.1.1</IP> 
    4     <Port>8080</Port> 
    5     <AuthKey>ssh-rsa AAAAB...</AuthKey> 
    6     <DeviceConfig>commands...</DeviceConfig> 
    7 </MyConfigTool> 
 

Fig. 4. Code excerpt of a Java application and a tool configuration file

made available in various programming languages. MINER is
a very modular software system that allows for far-reaching
extensibility using state-of-the-art plugin technology. Existing
measurement tools can easily be integrated into measurement
points which can run on any Java platform including mobile
devices (of course, this doesn’t mean that any existing tool
runs on any device).

MINER provides a fully documented and thus traceable
measurement workflow due to the linked storage of scenario
specifications, their executions and the individual results (and
logs) of each execution. The result is that a whole measure-
ment study can be repeated at almost no effort. Parts of a sce-
nario can be reused and this allows for efficient management
of scenarios and modification of erroneous configurations.
Scenarios are strictly validated as soon as they are submitted
to the infrastructure. This is very valuable given that a large
number of scenarios can be scheduled for execution at a later
time. MINER provides a foundation on which measurement
applications can be built. As an example, it enables the
development of reactive measurements similar to what has
been recently proposed in [30] (with the main difference being
that the REM instance would not be conducted locally –
something that can be enabled by plugins).

Practically speaking, MINER can save its users a lot of
manual (and repeated) work. Trial executions can be split
among different people, for instance a group of people can
prepare the various scenario specifications, one person runs the
scenario executions, and yet other people analyze the results.

Finally, with MINER it is very straight forward to share a
private or project internal testbed. The administrator can install
MINER in the (private) testbed. Other colleagues of the project
only need access to the web service that is exposed by the
Core component. As the end user communication only takes

place between the ClientLibrary and the web server, there is
no need to enable direct IP access from the end users to the
measurement points where the ToolProxies are located.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper a Measurement Infrastructure for Network
Research (MINER) is presented. The main objective of this
work is to support users in the task of carrying out systematic
measurement studies. The infrastructure integrates existing
tools and provides higher-level services on top of them.
The user can specify measurement activities that comprise
an arbitrary number of tools in a coordinated fashion. Such
measurement scenarios are submitted to the infrastructure and
can be scheduled for execution at a later time. As soon
as an execution has started, results can be retrieved. All
services of the infrastructure are available via a tool-agnostic
programming interface.

The paper presents the requirements that have driven the
work on MINER. Then, the key design aspects are presented
and the current implementation of the system is outlined. It
is shown how MINER can be applied to a specific problem.
The current usage in real-world scenarios is reported and it
is summarized what benefits the user can gain from using
MINER.

The MINER implementation has reached a first stable
version. From the current state the options for future work
are manifold. On the infrastructure level, the modularization
of the infrastructure Core using OSGi technology is yet to
be finished. The ability to extend / adjust the functionality
of Core modules to project specific requirements will greatly
enhance the applicability of the framework. On the ToolProxy
level, more work should be spent on optimizing the run-
time behavior with respect to performance and robustness
in adverse conditions. Some activities related to carrying out
systematic measurement studies would clearly benefit from a
graphical user interface.

The applicability of MINER to existing problems is directly
related to the availability of MINER Tools. Therefore, it is
clearly needed to wrap up many more existing measurement
tools as MINER Tools. Obviously, this process can be sped
up and optimized if the usage of the infrastructure becomes
more widespread and a user community emerges. To this end
we have setup a publicly accessible MINER playground. It
allows interested people to define scenarios on their desktop
and execute them in a small demo testbed hosted by us.
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